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ABSTRACT 

A set K is decomposable if it can be written as the Minkowski sum A + B 
where neither A nor B is homothetic to K. In this paper, it is shown that a wide 
class of convex sets is decomposable including those which contain a sufficiently 
smooth neighborhood on their boundary. 

1. Introduction 

Given two closed convex sets A, B contained in E d, we may define their 

Minkowski sum or vector sum A + B as {x: x = a + b, a ~A, b ~B}. Conversely, 

given any closed convex set K, the following question may be posed: For  what A 

and B is K = A + B? It  may happen that whenever K = A + B, A and B are 

homothets of K, that is, of  the form 2K + Xo (where 2K = {2x: x ~ K}) for some 

2 > 0 and some x 0 e E d. In such a case we say K is indecomposable. Otherwise, 

we say K is decomposable. 
The problem of decomposing convex sets has received the attention of various 

authors [3], [5], [8], [9]. A good summary of known results may be found in 

[4, w In general, the decomposability of  convex sets in E 2 is completely 

determined (triangles and line segments are the only indecomposable sets) and not 

a great deal is known, except for polytopes, if d > 3. 

I t  is the purpose of this paper to show that a wide class of  convex sets is 

decomposable, the only condition on the sets being that they have on their surface 

a neighborhood which is sufficiently "n ice" .  In order to precisely describe this 

notion, we recall the definition of the e-inner parallel body, K~ of  a convex set K;  
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K ~ = ( x e K : x + e B ~ K }  where B is the unit ball. Now let L ~ = K , + e B .  

Clearly, L~ ~ K, but in general, L~ ~ K, because it excludes the vertices of K. 

For  example, if K is a unit square, K8 is a square with sides parallel to K but a 

distance e away, and L~ is all of  K except that the corners are rounded off. We will 

say that a neighborhood N contained in the boundary of K is e-smooth if N ~ Lr  

Intuitively speaking, this means that a ball of  radius e can be moved around 

inside of K to touch every point of N. We can now state our principal result. 

(1.1) THEOREM. Suppose K is a closed, convex set in E a whose boundary 

contains a neighborhood U which is rotund (that is, contains no line segments) 

and e-smooth for some e > O. Then K is decomposable. 

(1.2) COROLLARY. Suppose K is a closed, convex set in E a whose boundary 

contains a neighborhood U which is rotund and which is twice continuously 

differentiable. Then K is decomposable. 

The idea of  the proof  is to take two copies of  K and modify them so that the 

surface on one of them is slightly "more  convex" in U while the other one becomes 

slightly "less convex" in U. If  we do this carefully, the resulting sets A', B' are 

convex and (�89 + (�89 = K. 

For  various reasons it turns out to be somewhat easier to work with the support 

function of  K, h ( K , u ) = s u p { ( x , u ) : x e K } ,  where ( . , - )  denotes the usual 

inner product. We will examine support functions in some detail in section 2. 

Section 3 is devoted to technical lemmas on convex functions, while section 4 is 

concerned with decomposing balls in a particular way. The proof  of our main 

theorem is found in section 5, and a generalization is stated in section 6. The 

proof of the corollary is given in section 7 and concluding remarks in section 8. 

2. Convex functions 

Support functions have many useful properties which are examined in detail in, 

for example, [2] and [10]. We need only the following: 

(2.1) A closed convex set K ~_ E a is completely determined by its support function 

h(K, u). 

(2.2) l f  A and B are closed convex sets in E a, then 

h(A + B, u) = h(A, u) + h(B, u). 

(2.3) h(K,2u) = 2h(K, u) for all ), > O. 

(2.4) h(K,2u + (1 - 2)u) < 2h(K,u) + (1 - 2)h(K,v) for all 0 < 2 < 1. 
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The properties stated in (2.3) and (2.4) are usually expressed by saying h(K, u) 

is positively homogeneous and convex, respectively. It turns out that these two 

properties characterize support functions [2, p. 26]. 

(2.5) Let h be any positively homogeneous, convex (real-valued)function 

defined on E d. Then h is the support function of some convex set K. 

Thus, in the light of the results quoted above, decomposing a set K is equivalent 

to writing one positively homogeneous convex function as the sum of two others 

and this is precisely what we intend to do. In fact, we wish to make use of an 

idea, apparently first introduced in [9], to reduce the problem to that of writing 

one convex function as the sum of two others. 

I f  f is any positively homogeneous function defined on H § = { x e E a : x  

= ( x l , ' " ,  xd), xl > 0}, we def inef  1 as the restriction of f to H i =  {x e Ed:xt = 1}. 

LEMMA. Suppose f, f l ,  H + and H 1 are as defined above. Then f is convex 

over H + i f  and only i f  f 1 is convex over H 1. 

PROOF. It is clear t h a t f  I is convex if f is, being a restriction of f .  Conversely, 

suppose f~  is convex. Then we may write 

f ( x )  = x i f l ( x 2 / x l , ' " ,  xa/xl). 

Now suppose x, y e H  +. It suffices to show that 

�89 + f ( y ) ]  >=f(�89 + �89 = �89 + y) 

where the last equality follows by the positive homogeneity of f .  Now 

f ( x )  + f ( y )  = x~f~(x2/xl ," ' ,  xd/xO + y l f l ( y2 /Y l , ' " ,  Ya/Yl) 

Yl 1 "",Y/Yx)] 

> (Xl + Yx)fl((xz + Y2)/(Xx + Yl), "",(x + y,)/(x 1 + Yl)) = f ( x  + y). 

Multiplying by �89 gives the result. 

Thus if h is a support function and we can write 2h x as the sum of two other 

convex funct ionsf  a and gt on H 1, with the additional restriction tha t f  x = h ~ = gX 

outside of some bounded set, then our problem is solved, because the final restric- 

tion will guarantee that f and g are support functions by our next result. More 

formally, we wish to establish 

PROPOSITION (2.7). Suppose that h is a support function on E a which is positive 

except at the origin and that N is a bounded subset of H ~. Suppose, moreover, 
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that f is a positively homogeneous function on E d such that f ~ is convex on H ~ 

and such that f ( x )  = h(x) i f  x ~ pos (N). Then f is a support function on E a. 

In the statement of the proposition above pos(N) denotes the positive hull of 

N = {x ~ E a: x = 2y for some y ~ N and some 2 > 0}. To establish the assertion, 

some preliminaries are needed. 

As in [71 we say that if f is any real-valued function on E d the epigraph o fF ,  

epi ( f )  = {(x,#): x e E  a, #~E~, f ( x )  =< #}. Clearly ep i ( f )  __q E a x EL The follow- 

ing fact about epigraphs will be useful [7, p. 251. 

(2.8) f is a convex function on E d i f  and only i f  epi(f)  is a convex subset of 

E d X E ~. 

(2.9) LEMMA. Suppose f is a real-valued fi~nction of a real variable such that 

f is convex on [ a , c ] , f  is convex on [b,d I and a < b < c < d. Then f is a convex 

function on [a,d 1. 

PROOF. Letf~_(x) denote the right derivative function o n f o n  the open interval 

(a, d). By [7, w convex on l-a, d] if and only if f+' is a monotone increasing 

function. By assumptionf~_ is monotone on (a,c) and on (b, d). Since b<c. it 

follows thatf~_ is monotone on (a,d) and the proof is complete. 

PROOF OF (2.7). S ince f i s  a positively homogeneous function it suffices to show 

that it is convex. By (2.6), f is convex on H § and by assumption, f is con- 

vex on E d ~ pos (N) [as usual, A ~ B = {x: x e A, x ~ B}1. Moreover, since f is 

positive except at the origin and positively homogeneous, f is convex on every 

line through the origin. 

Let Ix, Yl be any line segment which misses the origin. Then we can write 

[x, y] = (Ix, Yl f'l H+) U (Ix, Yl ~ ( Ed ~ pos (N))) 

where the two subsets overlap since N is bounded. 

By (2.9) the convexity o f f  on each part implies the convexity of f on all of  

[x ,y  1. H e n c e f i s  convex over every line segment and thus convex over all of E d. 

3. Upper and lower convex envelopes 

From the work of the preceding section, we see that if h(K, ) is the support 

function of K it suffices to write 2hi(K, ) as the sum of two convex functions 

f l  and g~, where f l  = gl =h~(K, ) outside a given bounded neighborhood N of  

H 1. Here we examine what restrictions this places o n f  t and gL Since H ~ is, for 
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all geometrical purposes, E d- 1, we will phrase our results in terms of functions on 

Euclidean spaces. 

Given any convex function f (not necessarily positively homogeneous) defined 

on E d and any bounded convex set N _ E d, we associate two other convex functions 

f* (N;  ) and f , ( N ;  ), which we term respectively the upper and lower convex 

envelopes o f f  with respect to N. Intuitively f *  ( N ; )  is the largest convex fun- 

ction which agrees wi thfouts ide  of  N whi lef , (N;  ) is the smallest one. 

Let G(N,f) denote the set of  all convex functions g in E d such that g(x) = f ( x )  

for all x ~ N. Then we define 

f* (N;  x) = sup {g(x): g e G(N,f)}. 

Since f* (N;  ) is the pointwise supremum of a collection of convex functions, it 

too is convex [7, p. 35]. Note thatf*(N,x) = f ( x )  for all x ~ N. 

The definition o f f , ( N ;  ) is somewhat more complicated. Let N'  be the set of 

points at which f is finite. We require that the interior of N'  contain the closure 

of N f o r f , ( N ;  ) to be defined. Let 9ff(N,f) denote the set of all those halfspaces 

o fE  d x E 1 which contain epi ( f )  and which have a bounding hyperplane supporting 

epi ( f )  at some point (x,f(x)) with x e N'  ~ N. Then R = n {H: ~ e K(N,f)} is 

a non-empty convex set and hence [7, p. 23] the epigraph of a convex function 

which we define to b e f . ( N ;  ). 

(3.1) Suppose f and g are convex functions on E a, N a convex set and h = f +  g. 

Then 

h*(U; x) > f * ( U ;  x) + g*(N; x). 

PROOF. Since f* (N;  ) e G ( N , f ) a n d  g*(N; )eG(N,g) , f* (N;  ) + g * ( N ;  ) 

G(N, h). The result then follows immediately from the definition. 

We wish to establish a similar relationship for h , (N;  ), but it is more difficult. 

We begin be establishing another characterization o f f , ( N ;  ) 

(3.2) f . ( N ;  x) = inf{g(x): g e G(N, f)}.  

PRoov. If  g �9 G(N,f), then epi (g) ___ H for all H e avg'(N,f). Hence epi (g) _~ R 

and so f . ( N ;  x) < g(x). We claim that f . ( N ;  x) = g(x)=f(x) if x r N and so, in 

fact, f . ( N ;  ) e  G(N,f). The assertion is then immediate. 

Suppose that for some x r N, f , (N,  x) <f(x) .  Then the hyperplane supporting 

ep i ( f )  at (x,f(x)) has f , (N ;  x) in the open halfspace not meeting epi(f). The only 

way this could fail to happen would be i f f  became infinite at x and the supporting 
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hyperplane is vertical--contrary to assumption of the finiteness of f (x) .  So if f is 

finite, (x , f , (N;  x))(ER, contrary to the definition of f , ( S ;  ), and the proof 

is complete. 

(3.3) Suppose f and g are convex functions on E d, N a convex set, and h = f +  g. 

Then h,(N;  x) < f , ( N ;  x) + g , (N;  x). 

PROOF. Since f , ( N ; x ) e G ( N , f )  and g , ( N ; x ) e G ( N , g ) ,  it follows that 

f , ( N ;  x) + g , (N;  x )e  G(N, h). The result follows immediately from (3.2). 

We remark in passing that it can be shown that equality holds in the result above. 

(3.4) LEMMA. Suppose f and g are functions on the real line which are equal 

outside of a closed bounded interval [.a, b]. Suppose, moreover, that f ~ g, that g 

is convex on [a, b] and that f is convex everywhere. Then g is convex everywhere. 

PROOF. One again we use the fact that a real-valued function p(x) is convex if 

and only if its right derivative function, p~_(x), [-or its left derivative function, 

p'_(x)] is monotone [-7, w By assumption, we deduce that g~_(x) exists every- 

where and is monotone on each of the intervals ( - 0% a), [a, b), and [b, ~ )  

separately. Likewise, g'_(x)' exists everywhere and is monotone on ( -  oo, a], 

(a, b] and (b, ~) .  

Now for z < a, g ~ ( z ) = f + ( z ) < f + ( a ) <  g+(a). The first inequality derives 

from the convexity o f f ,  while the second follows from the fact that f <  g and 

f (a)  = g(a). Thus g~_(x) is monotone on ( -  oo, b), and so g is convex on that 

interval. 

We likewise have for b < z, g ' _ ( b ) < f ' _ ( b ) < f ' _ ( z ) <  g'_(z). Thus g'_(x) is 

monotone on (a, oo) and hence g is convex on this interval. By (2.9) g is convex 

everywhere. 

(3.5) COROLLARY. Suppose f is a convex function on E d, N a bounded convex 

set, g a function equal to f outside of N and which satisfies f , ( S ;  x) ~ g(x) for 

all x f E  d. Then g is a convex function on E a i f  and only i f  it is a convex function 

on N. 

PROOF. In one direction the assertion follows easily. To see it in the other 

direction, consider the restriction o f f , ( N ;  ), and g to the line determined 

by x, y for any x, y in E a. By (3.4) g is convex on this line. Since g is convex on 

every line, g is convex on all E a. 
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4. Decomposing balls 

Here we show how to decompose bails in a particular way which we will use 

for our more general decomposition. 

(4.1) LEMMA. Let h B be the support function (restricted to H 1) of the unit 

ball, and let T be a bounded ball in H I centered at (1,0,...). Then we can 

write 2h a = p + q where p and q are convex functions, rotationally symmetric 

about the origin, which are different from ha, but which agree with ha outside 

of  T, and for which ha, (T; x) < p(x) < ha(x ) < q(x). Moreover, there are 

infinitely many ways to do this. 

PROOF. By the rotational symmetry, it suffices to prove the assertion on any 

line in H 1 through the center of T and then complete the resulting function by 

symmetry. So we suppose ha is defined on the real line with T =  ( -5 ,5) .  

In this special case it is easy to verify that ha(x) = x/1 + x 2. Thus, 

~(1 + elxl)/vil  + 5 2 
ha,(T; x) 

! 

th(x) 

i f x ~ T  

i f x r  T. 

The equation for hB,(T; x) is derived by observing that the tangent lines to ha(x) 

at the boundary of T determine ha,(T; x). Taking the convex function q(x) 

whose epigraph is the convex hull of epi (2h a -  ha,(T; )) gives 

q(x) = ~ a(x) 

k.2ha(x ) - ha,(T; x) 

i f x ~  T 

if Ix ] =< e/(4 + 352) 

otherwise 

where fl = (x/4 + 352 - D / x / T +  52. It is easy to see that q is convex and that 

hB(x) <= q(x). 

If  we define p(x) = 2hB(x) - q(x), then it is also easy to verify that p(x) is 

convex and that ha,(T; x) <= p(x) <= ha(x ). Moreover, if 0 < ;t < 1 the function 

pa(x) = 2p(x) + (1 - 2)ha(x) and qa(x) = 2ha(x) - p~(x) also satisfy the con- 

clusions of the proposition (as stated on the real line) and are not multiples of  

p(x) or q(x). Rotating the functions p(x) and q(x) in H 1 about the center of T and 

using (2.7) establishes the result in general, 
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5. Proof of main theorem 

Note that a body K which is e-smooth at a point x ~ bd(K) has a unique 

supporting direction u(x) there. So each x ~ U corresponds to exactly one 

u(x) in U' -- (u(x): x ~ N}. Conversely, since U contains no line segments, 

each u(x)~ U' corresponds to exactly one x ~ U. Since the correspondence is 

also bicontinuous, U and U' are homeomorphic. 

We assign coordinates so that the point (1,0,. . . ,  0) of S d- 1 is an interior point 

of U' and let H 1 be as usual. 

Let N = p o s ( U ' ) n H  1. Then N is homeomorphic to U' and thus to U. In 

addition, we may choose a small open ball M _ N such that M is centered at 

(1, 0 , . . . ,0)  and so that the closure of M is contained in the interior of N. 

The assumption that U is e-smooth is equivalent to asserting that the function 

j -- h - eha is convex over N where h is the support function of K and hB is the 

support function of the unit ball--each support function being restricted to H 1. 

Note that by a proper choice of origin, we can guarantee that h(x) > 0 if x ~ 0. 

By (4.1) we can write 2hB --- p + q, where p -- q -- ha outside of M and hB.(M; ) -<p 

everywhere. Now define 

and 

y h(x) if x ~ M 

d(x) = ~ j(x) + ep(x) if x s M 

h(x) if x ~ M 
e(x) 

~j(x)  + eq(x) if x M. 

We observe that d + e = 2h and that both d and e are convex functions over M 

(being the sum of convex functions) and are convex outside of M (being equal to 

h). So by (3.5), d and e will be convex everywhere if we can establish 

h , (M;  x) <_ d(x) and a similar statement for e(x). 

Now for x eM, d(x) =j (x )  + ep(x) > j , ( M ;  x) + eha,(M; x) > (j + eha),(M; x) 

= h , (M;  x). The first inequality follows from the facts that f > f ,  everywhere and 

that p(x) = ha(x) if x ~ M. The second inequality is proved in (3.4). 

It is even easier to see that for x e M, 

e(x) = j(x) + eq(x) >= j(x) + eha(x) = h(x) > h, (M;  x). 
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So by (3.5), d and e are convex functions. It only remains to show d ~ h ~ e. 

Equality might occur for our choice of  p and q in (4.1). But in this case we can 

choose two other functions p',  q' and define new functions d', e', where d' # h ~ e'. 

The arguments above then show that d'  and e' are the desired functions on H 1. 

6. A slight generalization 

The hypotheses of our basic theorem can be weakened somewhat to permit 

the size of the interior tangent ball to vary with the point in question. 

(6.1) T,EOREM. Suppose K is a closed, convex set in E d whose boundary 

contains a neighborhood U which is rotund and such that U c_ L =  ['7 {Ls: e > 0}. 

Then K is decomposable. 

PROOF. Let As = Ls cTbdK. Then each As is a closed subset of  the boundary 

of  K, and we also have U _ (7 {As: e > 0}. Since 6 < e implies As - An, we can 

also write U c_ () {Ax/,: n an integer}. Now U is of  second category and it must 

follow that one of the A1/,, say A1/u, is also of second category and thus contains 

interior points [6, p. 68]. Let V be the corresponding neighborhood of interior 

points. Then the result follows by applying (1.1) to V with e = 1/N. 

7. Proof of corollary 

By assumption, U contains no line segments. Hence, it suffices to show that there 

exists a subneighborhood V _c U such that V _ Ls = K, + 8B for some e > 0. 

Let W be any compact subneighborhood of  U and let x lie in the interior of  W. 

Since U is smooth, there is a unique supporting hyperplane H to K at x. Let 

T(x, 6) denote the ball of  radius 6 which meets the interior of K and is tangent 

to H at x. We first wish to show that for some 6 > 0, T(x, 6) n W -- (x}. 

Let z be any other point of  W. Without loss of generality we may assign coordi- 

nates so that K lies in the half-space {y: y, ___ 0}, so that x = 0 and so that 

z = ( z l ,  O, .. ., O, z,). Note that the hyperplane H = {y: y , = 0 }  is the supporting 

hyperplane to K at x. With these coordinates we may write any point w ~ W as 

w = ( w , . . . , w , _ ,  r(wl, . . . ,w,_1) ) for some real-valued function r (if it happens 

that W is so large that two points of  W lie above the single point of H consider 

a smaller neighborhood W'). 

By our hypotheses the mixed partial derivatives Dijr(w) exist and are continuous 
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throughout U, or more properly, throughout U', the projection of U onto H. 

Thus each Disr(w) attains an upper bound u;j on W. 

Let ~ = max(~s). The convexity of K guarantees that ~ >0.  It is now an ele- 

mentary matter to verify that for any direction v, Dv(D~r(w)) {D,.r(w) denotes here 

the directional derivative of r(w) in direction v} exists and is less than or equal to 

[1, p. 109]. Thus the argument which we apply below to z is equally valid for any 

other point in W. 

Let/5 = ct/5 and consider the ball T(x, fi). I f  l zlt > 6, it is clear that z (s T(x,~), 

so we may assume l zll < c5. We employ a Taylor expansion about x = 0. Our 

choice of parameters enables us to. write z, = r(0) + Dlr(O ) + �89 for 

some 0 < 2 < l. But r(0) = 0 and Dt r (0 )=0  since H is tangent to K there. Hence 

z,, = �89 ct/2. On the other hand, the height of T(x,~5) above H at 

. 2 But ~/2 < ~ -  x/~ 2 -  z 2 whenever ~5 < z~/~ + ~/4 ( z l , 0 ,  " , 0 )  i s /5  - x/fi  2 - z 1. 

which is true by our choice of ~5. Thus z r T(x, 6) for any z e W ~ {x}. 

Now choose a hyperplane H '  parallel to H so that the boundary of K between 

H and H '  lies entirely in W. This is possible since W contains no line segments. 

Let B' be the subset of B between H and H' .  Then B' _ K and, moreover, for 

some e > 0, T(x,e)~_ B'. Thus x~L~. Since x was chosen arbitrarily, the same 

result follows for every point in the relative interior of W (though, perhaps, the e 

may vary) and the result then follows from (6.1). 

8.  R e m a r k s  

While our proofs have really dealt with support functions, they may be phrased 

without any reference to support functions at all. Simply take the constructions 

on support functions given at each stage and carry out the parallel constructions 

on the body K. Such a procedure would enable us to eliminate most of Section 2. 

I chose to leave the proof  as it is because the arguments seem much more natural 

this way and because decomposing functions seems to be somewhat easier than 
decomposing sets. 

There is an unsolved problem which arises rather naturally from the discussion 

above. Let L = n {L,: ~ > 0}. Then K ~ L represents the set of all "vertices",  

in the sense that these are points which admit no tangent ball of positive radius 

from the interior of K. It is easy to see that L is dense in the boundary of K and 

too difficult to find examples showing that K ~ L is dense in the boundary of K. 

The question remains: Is the surface measure of  K ~ L always 0? 
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